If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-200t-80=0
a = 16; b = -200; c = -80;
Δ = b2-4ac
Δ = -2002-4·16·(-80)
Δ = 45120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45120}=\sqrt{64*705}=\sqrt{64}*\sqrt{705}=8\sqrt{705}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-8\sqrt{705}}{2*16}=\frac{200-8\sqrt{705}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+8\sqrt{705}}{2*16}=\frac{200+8\sqrt{705}}{32} $
| 22+2m=5m | | 99-2g=2g | | 45g-4g=5g | | 13x-6=4(3x+5)-14 | | 35+24=9f | | 2d+4=32 | | 1/9=x/100 | | 2w=18+w | | 8.2x+13=1.4+19.8 | | 8/x=0.5/0.75 | | 4x-1=3-5 | | 4(x-3)=-5(6-2)x | | -8.3=d+4.6 | | -3+10n=-133 | | 5(x-2)=-55 | | 6x-2+6x+1=11 | | 8^4x-1=512 | | 1-7.2x=-143 | | 1008=(2x-8)*(x+6) | | 1-7.2x=143 | | 9^x-4=32 | | 6x-(x+7)=15-3 | | 6x-9x-7)=13-5 | | 3y+6=9} | | 5.20-n=7.70 | | 5.20+n=7.70 | | -3n+24=6n+24 | | 3.95n+1.25=7.70 | | 1.33^x=100 | | 64=64+48t+16t^2 | | 180=g | | 6u=10+u |